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DYNAMICAL SYMMETRY AND SPIN WAVES
OF ISOTROPIC ANT{FERROMAGNET

V.G.Makhankov, 0.K.Pashaev, S.A.Sergeenkov*
1| ®[SUﬂq1H., is shown to be the

Noncompact group I]
k
dynamical symmetry group of a linearized 1sotrop1c
Heisenberg antiferromagnet. Elgenvalues and eigen-
states corresponding to the spin waves are construc-
ted. A group theoretical interpretation of the Bogo-
lubov transformation as a hyperbolic rotation in the
algebra space of the dynamical group is established.
In the framework of the coherent states technique it
is shown that the correspending classical dynamics
of the model is described by the harmonic oscilla-
tions on the Lobachevsky plane.

The investigation has been performed at the Labo-
ratory of Computing Techniques and Automation, JINR.

BAvHaMmuueckan CUMMETPUA M CRUHOBHIE BOfHY
B U30TPONHOM aHTudeppoMarHeTuxe

B.I.MaxanskoB, O.K.llamaes, C.A.CepreeHkosn

llokasaHo, YTO AMHAMHUYECKOH I pYIMoil CHMMETPHH JTH—
HeapH30BaAHHOT'O HM3OTPONHOrO aHTHdeppoMar"HeTruka SBJIA—
eTcA HeKOMHaKTHas rpynna I1®S[K11) fMocTpoenn guck-
PeTHHIf CIHeKTP H co6CTBeHHble COCToaHux, COOTBETCTBYIO™
e CNHHOBBM BOJIHAM. YCTAHOBHEH TeOPeTHKO-TI DYIHIOBOH
cMbicnt nipeoBpasoBaHus Boromof6oBa KakK rumnepGolHYecKoro
BpalleHUsI B NPOCTPAHCTBE anreBpbl OHHAMUUYECKON IDYIINH.
MeTogoM KOrepeHTHHX COCTOSHHI MOKasaHO, YTO COOTBET-
CTByKHee KlIaccHuYeckoe OBHKeHHE CHCTEeMbl OMHCHLBAETCSH
rapMOHHYECKHMH KOJIeGaHHAMH B TIockocTH Jlo6ayeBckoro.

Pa6ora BemonHeHa B JlaGopaTOPHH BBMNHCITHTENBbHO
TeXHUKH U aBToMaTHsauuu OUAH.

1. As is well—known/lﬂ the dynamical symmetry group
has appeared in the particle physics when various multi-
plets of particles were tried to be joined in a one irre-
ducible representation of some noncompact group.After that
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they found applications in a number of one-particle prob-
lems (hydrogen atom,etc.)and many particle problems(super-
fluidity, etc.)’ % In the case of the ordinary symmetry
groups the Hamiltonian of the system commutes with all
their generators. It means that energy degenerated states
are transformed via the group symmatry representations.
This is not the case for the dynamical symmetry group when
the Hamiltonian of the system belongs simply to the group
algebra. It is therefore named the spectrum generating
algebra.

In some many-particle problems when linearized the Ha-
miltonian of the system may be writtem through the gene-
rators of some dynamic¢al symmetry group. Then, solution
of the quarftum mechanical eigenvalue problem comes to the
solution of the proper group theoretical problem, i.e.,
to looking for the irreducible representations of the dy-
namical group. In addition to the complete information
about the spectra of the problem, the dynamical group
makes it possible 1) to censtruct the natural coherent
states for the initial quantum system, 1i) tc represent
the Green functions via the path integral over this sta-
tes and iii) to describe classical behaviour of the sys-
tem /7.11/'

The theory of magnetism is especially interesting in
this respect since there is a quantum microscopic theory
based on the Heisenberg model on the one hand and the.
macroscopic theory of magnetism governed by the Landau-
Lifshitz equations’®/ on the other. Sometimes one can
establish such a correspondence, for example, for isotro-
pic ferromagnet 8 but not yet for the antiferromagnet
and some models of anisotropic ferromagnet. As a first
step in this direction one can construct the dynamical
group and the coherent states of the proper spin models.

In the present communication the dynamical symmetry
group of a linearized two sublattices Heisenberg anti-
ferromagnet will be found as well as {using its irredu-
cible unitary representations) the spectrum and eigen-
states of the spin waves. Then the coherent states and
Green function will be introduced. In conclusion we show
that the classical dynamics of the linearized antiferro-
magnet as well as a nearly ideal superfluid Bose gas is
described by the harmonic oscillators on the Lobachevsky
plane.

2. Supposing the interaction is between the nearest

neighbours only then for the Hamiltonian of two sublat-
tices antiferromagnet we have
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K= 3 (L @'s’ +ne)-s2s?. (1)
iea,jep ° '3 i _
Here, up-spins form sublattice A and down-spins form sub-
lattice B. In the ground state every up-spin is in closed
neighbourhood with every down-spin and vice versa.
In a linear approximation it follows from (1) that:

+ +
I - ‘a4, +a. a4,
Hiin > 12 J(21)(s(a aJ + h.c.) ~s +s(a.lal + a;a,)] (2)
or in the momentum representation/84
K. =—»—Z-st+sz Ea:a., + S p) cos;g(at.a+-.+aaa ), (3)
lin P s Bk 2 0% kK - kK -k

>
where 2 1is the Eumber of the near neighbours, & is the
lattice vector, ai(a*) is the Bose operator of the crea-
tion (annlhllatlon) of a magnon with momentum k and

[a ,a =8 a,, a =[as,as ]=0.
papl-tep, lagapd=tlas anl

Let us following/a/ introduce the operators:

(k)

—--—1- : - - (k) i tat
Jy = 2(T‘ak +aza o), J, 2 (aiai ~apa o),
(k) (4)
1 .+ +
= = (3d,a, 3.,3_.
3 2 ( A S b
generating the algebra of the [ SU(1,1)], group:
I - e - k > -
(k k k
“1) é)]* i3 ® g g0 ,Jm HOSNPON
3 3
. . . (5)
In terms of this operators the Hamiltonian {(3) assumes
the form:
() (;) . -2 z '
-2 i - - =
lin B Ns® +s2‘.k zJ, 3 %cosk& 2]. (6)

The quantum mechanical problem is to solve the following
eigenvalue problem:

}{lin i‘.Pn> = En]\pn>‘ @

To construct the discrete spectrum of this problem
let us perform the hyperbolic rotation by the angle Oa
over the axis J(

-1
.. *Hun = R}(“nR , 8)

lin
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where R=£I R (Gi; ), R(Gg) = expi-iJék)G T{’}' It is important
k

to emphasize that transformation (8) is a group theoreti-

cal analogue of the well-known Bogolubov u~-v transforma-

tion”1% As a result we have

-

- 2 T &)
Hip =-£Ns® 483 (v2©-(Seoskd) 1, -2, - (9)

o

e

where the., = —1- 3 cosE 5

The Ca51m1r operator of the ISU(1, l)]—» group is:

(k
-0y HP-q 1(‘")2 (J;“’ﬂ;—( 2;‘.--1), (10)

+
where Ap-= a x3; —agag.

The only p0331b1e irreducible unitary representation
H®D (i) of the II ® [ SU(1,1)]13 group corresponding to

bound below spectrum is as follows:
(k)
J ]n>=(n +o,)in>, 11
3 2l (11)
wllere ln1 » Ny s
=-é- a+| A;i):—jK.For energy a%d eigenstates of the Hamil-

tonian (9) from (7), (8) and (9) it follows that:
. s 1 14g]

= N+ ~—
nlv ....n;.... —l; k-.'- 2 + 2

cey nK,..- > =_l:l]nz>, n§= 0,],2,...;0’;=

)E-> ~:—~Ns(s+1) (12)

2 >0 2, . .
where EE=S\/Z —-(Zcoskd) is an antiferromagnon excita-

tion spectrum

j-)
k
|‘P(n10 .”,ni(”.“ )>=_I’]®mz Sm»n_.(g-l;)lmi">, (13)
where k K kK
a - B—)
gs = £ Tk \e fsua.nl,,
k - - k
Be %
a =ch-—f; B.= shf—l;: s k (8>) are the finite matrix ele-
¥ 2 0P M Smpa By

ments of the unitary irreducible representations corres-—
ponding to the group element g- ¢ [SU(I,])]I? /3/In parti-
cular, for the ground state (n, =0, A, =0, j, =-1/2)
one gets: k k K
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> > 2
E, 0 == 22— (3 coskd) - ZNs(s +1), (14)
R | 2 E g 2
0; 0; + +
| ¥(0,...,0,...)> = I sech —exp{-% th—asa 5 }| 0>, (15)
_l; 2 E 2 k -k
where 2

a,|0> =10, th s
k S.cosk
5

This result, as it might be expected coincides7 with the
one getting via the Bogolubov transformation

For the linear spin chain (z = 2) we have the follow-
ing spectrum of an antiferromagnon excitation

&(k) = 2s|sinka| , (16)

which is well-known from the Anderson solution of an iso-
tropic antiferromagnet model 712/ The eigenvector of the
ground state of the system is

Ok g, + +
|¥, ...,0,...)> = Il sech —-é-mexp{—.% th-El‘-aka_:kl|0>, (17)
where th —--.- = —-:—-Lil.n..l.‘al
coska

Dynamical symmetry group allows one to construct the
coherent states of the system and to represent 1ts pro-
pagator via the path integral over these states’1Y In our
case the propagator of the system can be presented in the
form:

K(L,&T-e 200 ' q 5 ¢
6 T)=e I K, (£, ¢,T), ,
i 1A Aol % "R (18)
where
¢z iha_, 2
( > ¢, D= fdp (éa )expf—-—fdt—-—--——(C,C -
“ia;l ¥ Al 112 R
k 2 k
' 2 538 1+(¢]
—<*¢Q)+ slvz®-(3 coskd) "o, ___._._..m -~ -2_ z11.
LK 5 K- ®
k
Here the [SU(l,l)]; coherent states have been used’”'!V/
: 1-¢ 7 {¢ PORE 0 /
1655 00> =@ =14 ) 7 expllT, oy, 0>, £19)
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where
2

(E) (-l;) A (_’) 205-1 d é—)
I, =Jp AT e (4;)_ k kg
@ 2 1451 Ak
< > > 67 '
(:,[J 'Ck> o 1+ g ¢ (20)
<¢-»Ié—y> k 1 —:C';év.,
k k k k

The equivalent classical problem determined through
a path integral (18) is dealing with a curved phase space
namely Lobachevsky plane. It follows from the classical
action in eq.(18) that the corresponding classical motion
for the quantum linearized antiferromagnet will look os-—
cillator-like on the Lobachevsky plane with frequencies:

® = S yz® - (Ecosﬁg)g,
k b 3

. . 2
In one space dimension @y = -p~Isinka| so we have the
quasiclassical result: :

ho, = 2s|sinkaj, 1)

As is well-knowné for spin 8 = 1/2 the Anderson”s ex-
citation spectrum coincides with the exact one in the
XY model’®’ and differs from the exact result for "hole'-
like excitation spectrum in the isotropic antiferromag-
net 7913/ yp to the coefficient 2/#. It follows from mo-
del (21) that the frequency of classical motion on Loba-
chevsky plane doesn”t depend on the choice of the cohe~
rent state related to the representation space of the
dynamical symmetry group. This means that described by
the linearized antiferromagnet equations the harmonic
motion cannot reproduce the configurations related to
the exact result for the quantum integrable system/134
and it is necessary to study more complex soliton-like
configurations of the nonlinear classical equations cor-
responding to the isotropic antiferromagnet. One of the
possibilities is considered in paper /!4/where the coef-
ficient in excitation spectrum (21) is determined by the
density of the magnon condensate.

It is important to emphasize once more that a coinci-
dence of the dynamical symmetry groups for a linearized
antiferromagnet and a nearly ideal Bose gas of super-
fluid type makes it possible to conclude that a classi-
cal motion in both cases is determined by the harmonic
OSC}l%ﬂtorS on the Lobachevsky plane. As is shown in pa-
per' ", a similar character of motion is given by a clas-
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sical integrable model of Heisenberg magnet with the mag-
netization vector lying on the hyperboloid Su€i,1)/u(1).
This model is gauge e?uivalent to the repulsive nonlinear
Schrédinger equation/ 5/ that describes a nearly ideal Bose
gas on the classical level. Tt should be noted that if

the ordinary coherent states are used in our problem,

one immediatelyaencoquers the difficulties of the mixing
of modes with +k and -k momenta. This difficulties are
overcome with the introduction of the SU(1,1) coherent
states.

Thus one can say that the ground state gf an antiferro-
magnet as well as of a superfluid Bose gas may be rela-
ted to the magnon condensation in momentum space.

In conclusion we remarked that the above consideratioén
may be applied to a number of problems of the magnetism
theory. Among them there is a spin-wave theory providing
an adequate description of the low-energy magnetic excita-
tions in materials that can be described by a Heisenberg
exchange Hamiltonian. When the boson Holstein-Primakoff
representations are used,the corresponding dynamical sym-
metry groups are noncompact e [SU(I,I)EE. Related to

the spin-wave classical motiog following from the path
integral in SU(1,1) coherent states representation is the
harmonic mation on the Lobachevsky plane. There are, for
example, the spin waves in the anisotropical XXZ antifer-
romagnet, those in the ferromagnet with dipole interac-
tion, in ferrimagnets and in the easy-plane anisotropical
ferromagnet. It is important to note that for the spin

S = /2 in one dimension there exist an exact Jordan-
Wigner transformation from the Pauli to the Fermi opera-
tors. Related dynamical group is now compact ldeLKZﬂz,

k

and the clasgical motion is the harmonic osecillations on
the sphere S There are for example the XY ferromagnet
as well as XXX ferromagnet with spin s = 1/2. These re-
sults with some other lattice models will be published
elsewhere.

The authors are indebted to I.Gochev, V.B.Priezzhev,
D.Pushkarov and to others participants of the Fedyanin”s
seminar for critical and fruitful discussions.
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